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Zusammenfassung
Im Standardmodell der Teilchenphysik gilt die CPT Symmetrie als fundamental. Um
diese Annahme zu testen, verwirklicht die ASACUSA (Atomic Spectroscopy And
Collisions Using Slow Antiprotons) Collaboration ein Rabi ähnliches Experiment um
die Hyperfeinstruktur von Antiwasserstoff im Grundzustand mit hoher Präzision zu
messen. Der Vergleich der Übergangsfrequenzen von Wasserstoff und Antiwasserstoff
erlaubt einen direkten Test des CPT theorems im Rahmen der Standardmodeller-
weiterung.

Das Spektrometer ist aus einer Quelle, einer Mikrowellen Kavität, einem Sextupol
Magneten und einem Detektor aufgebaut.

In dieser Arbeit wird die Implementation und Ergebnisse der numerischen Simu-
lation von Hyperfeinübergängen von Antiwasserstoff/Wasserstoff im Grundzustand
präsentiert und diskutiert.

Der Einfluss von Temperatur und Verteilung des Teilchenstrahls, Inhomogenitäten
des statisches Magnetfelds in der Kavität, Leistung der Kavität und Teilchenzahl auf
die Resonanzspektra wird untersucht. Methoden zur Bestimmung der Übergangsfre-
quenz bei Abwesenheit eines magentisches Felds werden diskutiert und verglichen.

Abstract
In order to test CPT symmetry which, by the standard model of particle physics, is
considered to be an invariant the ASACUSA (Atomic Spectroscopy And Collisions
Using Slow Antiprotons) collaboration realizes a Rabi like experiment to measure
the hyperfine splitting of antihydrogen in the ground state with very high precision.
Comparing the transition frequencies of hydrogen and antihydrogen allows a direct
test of CPT within the framework of the Standard Model Extension.

The ASACUSA spectrometer line is built up of a source, a spin flip inducing
microwave cavity, a spin analyzing sextupole magnet and a detector.

In this thesis, implementation and results of numerical simulation of hyperfine
transitions of antihydrogen/hydrogen in the groundstate within the ASACUSA setup
are presented and discussed.

Effects of beam temperature und distribution, inhomogeneities of the static magnetic
field inside the cavity, cavity power and partice statistics have been studied. Methods
of obtaining the transition frequency at zero magnetic field have been discussed and
compared.
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1 Introduction

Several grand milestones in physics are historically connected to studies of the
hydrogen atom - as the simplest of all atoms, it has played an important role
in testing theories and understanding atomic structure.

The discovery of the spectral lines of hydrogen lead to Bohr’s model, giving
a first rough description. Later, with gained experimental resolution, the fine
structure of hydrogen was discoverd and explained by Dirac’s theory [1][2]
resulting in his famous equation describing free spin 1/2 particles:

(

iγµ ∂

∂xµ
−m

)

ψ = 0 (1.1)

where x denotes the four vector of space and time, γ the Dirac matrices, m
the mass of the particle and ψ a spinor wave function. Although his equation
containes two kind of solutions - ones with positive energies and the others
with negative energy which at first glance seemed to be a flaw at that time.

But this lead to the idea of antimatter which was first experimentally
detected in cosmic rays by Anderson in 1932.

Also, after experiments by Rabi, Lamb etc. a discrepancy to Dirac’s theory
was found - the experimentally determined hyperfine structure in the ground
state differed from that predicted by theory.

An attempt to solve this contradiction ended up in the development of the
renormalization method and Feynman diagrams which are now vital in particle
physics [3]. With this, also the Lamb shift and the anomaly of the magnetic
moment of the electron could be described.

The necessity for physics beyond the standard model grew with time and
discoveries which cannot be explained by the standard model were made like
neutrino oscillations, dark matter, dark energy and of course the cosmological
asymmetry of matter and antimatter.

The hydrogen atom is one of the best known systems in physics. The first
creation of antihydrogen in 1996 [4] and its later production in quantity in 2002
[5] strongly suggested to compare the properties of these two atoms - what
could be better suited to help solve the important questions left unanswered
by the standard model than good old hydrogen and his antimatter brother?
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2 Theoretical Background

2.1 Hyperfine Structure of Hydrogen

The hyperfine structure of the spectral lines is a result of the coupling of ~J ,
the total angluar momentum of the electron, and the total angular momentum
of the proton ~I to the total angular momentum of the system: ~F = ~J + ~I. In
case of the 1s groundstate of hydrogen, the interaction between the proton
and electron spin leads to a singlet state with F = 0 and a triplet state with
F = 1 and M = −1, 0, 1, see figure 2.1.

Without an external magnetic field, the transition frequency between these
two levels is [6][7]:

νHF = 1420405751.7667 ± 0.0009 Hz (2.1)

which is one of the most accurately measured quantities .
In a magnetic field however, the degenerated F = 1 level splits up, see figure

2.2, and the energies of all four states shift. Therefore, in the presence of an
external magnetic field not only one but several transitions can be observed in
the hydrogen atom.

Regarding their behaviour in an inhomogeneous magnetic field, these states
can be classified into low- and high-field seeking states (LFS and HFS).

The energy of the atom in a B-field shifts according to ∆E = −~µ ~B and the
magnetic moment will align paralell ((F,MF) = (1,1) and (0,0)) or antiparallel
((F,MF) = (1,−1) and (1,0)) to the B-field. If now a field gradient is added,

1s

F = 1

F = 0

M = 1 M = 0 M = –1

M = 0

Figure 2.1: The splitting of the 1s level of hydrogen due to the electron and proton
spin interaction.
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2 Theoretical Background

F = 1

F = 0
1.42 GHz 0.1 0.2

B (T)

1²s
1/2

Figure 2.2: Hyperfine splitting and Breit-Rabi diagram. Splitting of the hyperfine
niveaus in an external magnetic field.

LFS states HFS states
H (1,1), (1,0) (1,−1), (0,0)
H̄ (1,−1), (1,0) (1,1), (0,0)

Table 2.1: Overview of low field seeking and high field seeking states in hydrogen
and antihydrogen.

the atoms with parallel magnentic moment will tend to move toward higher
field regions where they will have lower energies. For the states (F,MF) =
(1,−1) and (1,0) the opposite is true.

Note, that the order of levels is different for hydrogen and antihydrogen. An
overview is given in table 2.1.

2.2 Limits of the Standard Model

Particles and their interactions are well described by the standard model - but
only at the currently accessible energy scales i.e. starting at the electroweak
scale mW and being small compared to the Planck mass MP (=

√

~c/G ≃ 1019

GeV) [8]. At energies in the order of MP though, the standard model is no
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2 Theoretical Background

longer able to describe nature properly since gravity is not included [9].
In this energy region, the standard model is expected to be superseded by

a more fundamental theory that connects quantum theory and gravitation
consistently [10].

Accelerators of today cannot reach the Planck scale - but low energy manifes-
tations of this underlying theory may exist which are suppressed at ’common’
energies.

Though these effects will be very small due to the energy difference between
the low energy scale and the Planck scale and only high precision experiments
might be able to detect them [9][10].

One of these manifestations of the underlying theory might be the violation
of the CPT symmetry, a fundamental symmetry embedded in the stardard
model.

2.3 CPT Symmetry

The CPT theorem states that the descrete symmetry of CPT (Charge, Parity
and Time) is an exact symmetry i.e. an invariance for all local quantum field
theories with Lorentz symmetry assuming pointlike particles e.g. the standard
model or quantum electrodynamics (QED).

It predicts that the properties of particles and antiparticles must be identical
(mass, lifetime) or equal but opposite (charge and magnetic moment). There-
fore, the CPT theorem also says that atoms and their antiparticles have the
same characteristic spectrum. If any difference would be found experimentally,
this would hint at effects coming from beyond the standard model [11].

Since the hyperfine transition frequency of hydrogen is one of the best known
properties of matter - up to a precision of 10−12 [12] - a possible experiment
to test CPT symmetry is the hyperfine spectroscopy of antihydrogen with
precision equal to that in the hydrogen case.

A summary of precisions from different experiments testing CPT using
particle antiparticle comparision is shown in figure 2.4. Currently, the test
with the highest relative precision is the K/K̄ mass measurenment with a
relative precision ∆m/m ≈ 10−18 which corresponds to an absolute precision
of 105 Hz.
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Figure 2.3: Illustration if C, P, T, CP and CPT symmetry (picture by Bertalan
Juhasz).

A relative accuracy of the measurement of the antihydrogen groundstate
hyperfine splitting frequency (H̄ GS-HFS) of 10−4 could already compete with
the Kaon test, since its absolute precision would be 1 GHz × 10−4 = 105 Hz.

In oder to make cross comparisions of the CPT tests which measure different
quantities easier, it is beneficial to use a common theoretical framework [14].

One of them is the Extension of the Standard Model (SME) which will be
discussed in the next section.

2.4 The Standard Model Extension

Since Lorentz and CPT symmetry are embedded in the stardard model, no
predictions can be made by this model on how breaking of these symmetries
might take place [15].
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2 Theoretical Background

Figure 2.4: Summary of relative (length of the red bars) and absolute (left edge of
the bar) precisions of different CPT symmetry testing experiments. The
doted line of the H−H̄ νHFS bar symbolizes the precision possible for the
maser. (picture adapted from [13])

However, Don Colladay and Alan Kostelecký have developed an Extension of
the Standard Model [16] which is a more general and fundamental model and
combines the standard model and general relativity. It allows microscopic CPT
and Lorentz symmetry violating effects and is compatible with established
quantum field theory and also experimental constraints.

2.4.1 Antihydrogen Spectroscopy and the Standard Model
Extension

Taking a look at free H/H̄, according to the SME additional terms due to
symmetry violation appear in the Lagrangian and therefore to a modified
Dirac equation [10]:
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2 Theoretical Background

(iγµDµ−me−ae
µγ

µ−be
µγ5γ

µ−1

2
He

µνσ
µν +ice

µνγ
µDν +ide

µνγ5γ
µDν)ψ = 0 (2.2)

here ψ is a four-component electron field describing an electron with mass
me, the Dirac matrices γ, iDµ ≡ i∂µ − qAµ with the electromagnetic four
potential Aµ = (|e|/4πr, 0). All in units of ~ = c = 1.

Lorentz symmetry breaking is incorporated by a set of coefficients - terms
with ae

µ and be
µ also violate CPT, whereas He

µν , ce
µν and de

µν conserve CPT.
This coefficients are expected to be small and need to be determined or

constrained by experiments.
In order to study the effects of the Standard Model Extension on free H and

H̄ spectra, perturbation theory in relativistic quantum mechanics is used [10].
This is justified because of the assumed small size of the coupling coefficients.

The unperturbated H and H̄ Hamiltonians are idential, so are all perturbative
terms which appear due to conventional QFT calculations. Therefore, their
eigenenergies and spectra are identical as well.

Though including the Lorentz and CPT symmetry breaking coefficients of
the SME, a calculation of the spectra of hydrogen and antihydrogen leads to
energy shifts of their levels.

For the 1s and the 2s levels of hydrogen, the perturbative result for the
energy corrections for a basis state |mJ ,mI〉 is [10]:

∆EH(mJ ,mI) = ae
0 + ap

0 − c00me − cp
00mp (2.3)

+ (−be
3 + de

30me +He
12)

mJ

|mJ | (2.4)

+ (−bp
3 + dp

30mp +Hp
12)

mI

|mI | (2.5)

where mp is the proton/antiproton mass, me the electron/positron mass and
mJ and mI the projections of the angular momenta ~J and ~I on the z-axis. In
the case of antihydrogen, a, d and H reverse sign.

For the hyperfine levels of hydrogen, the SME gives the following results for
the energy shifts [10][9]:
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∆EH
(1,1) = −be

3 − bp
3 + de

30me + dp
30mp +He

12 +Hp
12 (2.6)

∆EH
(1,0) = − cos 2θ(be

3 − bp
3 − de

30me + dp
30mp −He

12 +Hp
12) (2.7)

∆EH
(1,−1) = −∆EH

(1,1) (2.8)

∆EH
(0,0) = −∆EH

(1,0) (2.9)

where (1,1), (1,0) etc. denote the different states (F,M) and cos θ is the spin
mixing parameter of the (0,0) and (1,0) states and depends on the principal
quantum number and the B field.

Measuring the hyperfine transition frequency of antihydrogen and hydrogen
provides a direct test of CPT symmetry since the energies are directly connected
to the CPT violating coefficients.

Note, that the coefficients in the SME Lagrangian have the dimension of
energy, therefore one has to compare absolute values of energies and not
relative ones as it is done in the neutral Kaon system.

If the atoms move in an external magnetic field, the hyperfine niveaus will
split up according to the Breit-Rabi formula [17]:

E(1,1) =
1

4
E0 − 1

2
(gJ + gI)µBB + ∆E(1,1) (2.10)

E(1,0) = −1

4
E0 +

1

2
E0

√
1 + x2 + ∆E(1,0) (2.11)

E(1,−1) =
1

4
E0 − 1

2
(gJ + gI)µBB − ∆E(1,1) (2.12)

E(0,0) = −1

4
E0 − 1

2
E0

√
1 + x2 − ∆E(1,0) (2.13)

where x = B/B0 andB0 = 2πνHF/((gJ−gI)µB) with gJ = −2.0023193043718
[18] and gI = 0.003042064412 [18] (both in units of µB) .

Taking a closer look at equation 2.6 etc. reveals that if we set the spin
mixing parameter to zero which corresponds to zero B-field, then we can see
that the energy shifts of the states (1,1) and (1,−1) do not vanish and are
equal in amount but opposite in sign - so the F = 1 degeneracy is lifted [9],
see figure 2.5.
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2 Theoretical Background

Figure 2.5: Right: Breit-Rabi diagram [19]. Splitting of the hyperfine niveaus in an
external magnetic field, alignment in high fields of the spins of e+ and p̄
and suitable transitions between the levels for a spin state analyzing ex-
periment. Left: Lifted degeneracy of the F = 1 hyperfine level according
to the SME.

So in this scenario CPT symmetry breaking would arise as anomlies in the
hyperfine niveaus of the system while studying the spin states of the atoms of
the beam. Using the different behaviour of low- and high-field seekers in an
inhomogenious magnetic field, one can differenciate between the states after
inducing a spin-flip from a LFS to a HFS state and vice versa. The following
transitions are suitable for detecting hyperfine structure anomalies [19]:

σ1 : (1, 0) → (0, 0) : νσ1
= ν0

√

1 + x2 +
2∆E(1,0)

h
(2.14)

π1 : (1, −1) → (0, 0) : νπ1
=

1

2
ν0 − 1

2
(gJ + gI)µBB/h +

1

2
ν0

√

1 + x2 +
∆E(1,1) + ∆E(1,0)

h
(2.15)

π2 : (1, 0) → (1, 1) : νπ2
=

1

2
ν0(
√

1 + x2 − 1) − 1

2
(gJ + gI)µBB/h +

∆E(1,0) − ∆E(1,1)

h
(2.16)
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3 Experimental Setup

3.1 The Rabi Experiment

The ASACUSA experiment to determine the hyperfine structure of antihydro-
gen is based on an experiment first proposed in 1938 by I. Rabi which was
the first application of the magnetic resonance principle. The setup of this
experiment can be seen in figure 3.1.

The atomic beam passes through an inhomogeneous magnetic field region
where one spin state will be selected - this behaviour was already discovered
by O. Stern and W. Gerlach in 1922 [21].

Afterwards, the beam will pass a region with a radio frequency field super-
imposed with a homogeneous field.

Depending on the frequency of the oscillating field, the beam is then either
focused by a second inhomogeneous field region or deflected if the oscillating
field had induced a spin flip. With the molecular beam magnetic resonance
technique, the frequency of the oscillating field is kept constant while the
strength of the superimposed homogeneous magnetic field is varied. Monitoring
the counts at the detector allows to measure the transition frequencies with
high precision.

For a π pulse we get for a single velocity beam a single line with a full width

Figure 3.1: Setup of the Rabi experiment [20].
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3 Experimental Setup

at half maximum (FWHM) [22]:

f =
0.799

T
(3.1)

with the time T the particle spent in the RF-field. For a beam with a
Maxwell-Boltzmann distributed velocity, we get a FWHM f of [22]:

f = 1.073
vm

L
(3.2)

with L being the length of the path the particle flies through the oscillating
field region and vm being the most probale velocity of the Maxwell-Boltzmann
distribution.

In the cavity used for the ASACUSA experiment the resonace spectra will not
be a single peak, but have a double peak structure due to the field distribution
of the microwave field, see for example figure 3.6. Since the standing wave
inside the cavity is a superposition of a wave traveling in beam direction and
a wave moving backwards, the structure of the spectrum can also be thought
of as a Doppler splitting [23]. Hence, the peak splitting is proportional to the
velocity of the particles in the beam. A table with calculated FWHM for both
the monovelocitic and the Maxwell-Boltzmann distributed velocity beam as
well as FWHM and peak separation of the simulated spectra can be found in
the Appendix.

3.2 Hyperfine Spectroscopy of Antihydrogen

One of the goals of the ASACUSA collaboration (Atomic Spectroscopy And
Collisions Using Slow Antiprotons) is to test the CPT symmetry by mea-
suring the ground-state hyperfine structure of antihydrogen using a Rabi-like
experimental setup. A sketch of the spectrometer line can be seen in figure
3.2. In principle, the experiment is composed of four stages:

1. the production of antihydrogen using a so-called CUSP trap,

2. the induction of hyperfine transitions using a microwave cavity,

3. the analysis of spins using a sextupole magnet

11



3 Experimental Setup

CUSP trap 

Cavity

Sextupole

Detector

Figure 3.2: Schematic drawing of the experimental setup.

4. and the detection of antihydrogen.

In the following, the different parts of the experiment will be discussed.

3.2.1 The Production of Antihydrogen

Antiprotons p̄ and positrons e+ which are the constituents of antihydrogen
are first collected in Penning traps before injected into the CUSP trap where
the mixing takes place.

The p̄ are produced at the PS (Proton Synchrotron) at CERN where a
proton beam is shot at an iridium target and the reation p + p → p + p + p
+ p̄ takes place.

The antiprotons are slowed down by the AD (Antiproton Decelerator) to
≈5.4 MeV and, after leaving the ring, furhter decelerated by the RQFD (Radio
Frequency Quadrupole Decelerator) to approximately 115 keV [24].

Then they are accumulated in the Musashi trap. The positrons are provided
by a 22Na source via β+-decay and collected in a Penning trap.

The synthesis of a spin-polarized antihydrogen beam takes place in the
so-called CUSP trap. It consists of a pair of superconducting Anti-Helmholtz
coils and multi-ring electrodes (MRE) (stack of electrodes) [25]. The magnetic

12
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Figure 3.3: Potentials, magnetic field and MRE of the cusp trap [25].

field and the different potentials produced by the MRE, which are necessary
to produce antihydrogen, are shown in figure 3.3.

The positrons are injected into the MRE providing the potential φ1. Directly
afterwards, the field configuration is changed to φ2 to keep the positrons
trapped inside the CUSP. They are cooled and compressed while the potential
is slowly changed to the nested trap potential φ3. Then, using the configuration
φ4, the antiporotons are injected and the potential is immediately changed
back to φ3. The positron and antiproton plasma mix and antihydrogen is
formed either via radiative or three-body recombination.

Since H̄ is neutral, it is not affected by the trapping potential and leaves
the MRE field isotropically. Some of the produced H̄ are collected in the field
ionizing trap (FIT) which can only be passed by antihydrogen atoms in certain
quantum states depending on the field strength of the FIT (principal quantum
number ≈ 45 [25]), all others are ionized.

The magnetic field of the CUSP trap (see figure 3.3 and 3.2) provided by
the Anti-Helmholtz coils is inhomogeneous shaped in a way that high-field
seekers will be defocused as they leave the CUSP trap and low field seekers

13



3 Experimental Setup

Figure 3.4: Left: Cavity with two flanges and the Helmholtz coils (yellow support
structure) Right: One flange removed so one can see the inside of the
cavity with resonator stripline, wings and entrance/exit opening for the
beam with mesh and beamstopper.

will be focused. Therefore, a (partially) polarized antihydrogen beam exits
the CUSP trap.

3.2.2 The Spin-flip Cavity and the Spin Analyzing
Sextupole Magnet

The microwave cavity is shown in figure 3.4. The oscillating magnetic field
which induces the spin flips in the atoms is generated by a double stripline
resonator which is placed inside a cylindrical vacuum tank.

Figure 3.5 shows the field distribution oft the microwave field. One can see
that it is very homogeneous in the plane orthogonal to the beam and has a
sinusoidal distribution in beam direction - the field is zero at the center of the
cavity and has maxima at the front and the back walls. As a consequence
of this, the frequency scan of a transition will have a double peak structure -
when the frequency of the oscillating field is on resonance, the effects of the

14



3 Experimental Setup

Figure 3.5: Field distribution of the oscillating magnetic field in the x-y plane (left)
and the y-z plane (right) [26].

two regions will cancel each other and one gets zero signal on resonance [23].
This can be seen in figure 3.6.

In our cavity, two kinds of transitions are possible - the σ1 and the π1 -
depending on the angle between the oscillating magnetic field and the static
magnetic field provided by Helmholtz coils. For the σ1 transition, the two
B-fields need to be parallel whereas for the π1 transition they have to be
orthogonal to each other.

In the experiment, a small static magnetic field is used. In this case, the
transition frequency of σ1 has a second order dependance on the external
field and the π1 transition is with a linear dependence very sensitive to
the homogeneity of the external field [27]. Therefore in order to keep the
homogeneity as high as possible, a shielding is used to block stray fields of e.g.
the CUSP trap but also the earth magnetic field and perturbations from other
experiments.

There are now two possible ways to determine the transition frequency at
zero static magnetic field:

1. by measuring the resonance frequency of the σ1 transition at different
external B-fields and then doing an extrapolation to zero field using the
Breit-Rabi formula.

15



3 Experimental Setup

0.08

0.085

0.09

0.095

0.1

0.105

0.11

0.115

1420.37 1420.38 1420.39 1420.4 1420.41 1420.42 1420.43 1420.44

n
or

m
al

iz
ed

co
u
nt

s

microwave frequency (MHz)

Figure 3.6: Transition at 0 magentic field using 106 monoenergetic (0.01 eV) antihy-
drogen atoms per scan point, 70% LFS and 30% HFS, y-axis: normalized
counts (hits at the detector over number of particles produced at source),
x-axis: frequency (MHz). For more informations see chapter 4.3.

2. or by doing a resonance scan for both the σ1 and π1 transition and using
the transition frequencies and equations 2.14.

For more on this, see chapter 4.5.6. According to simulations, the second
method leads to a higher precision (factor of ≈ 1.12, see chapter 4.5.6) compared
to the first possibiliy, though, a higher homogeneity is required because of the
sensitivity of the π1 transition.

Depending on the choice of method, the alignment of the Helmholtz coils
needs to be changed due to the dependence of the angle between the two fields
of the transitions. If one chooses scenario two which is favoured since it would
lead to a more sensitive CPT test, then an angle of 45◦ is needed, in order to
measure both transitions.

The vacuum chamber of the cavity has two openings to allow the beam to
enter and exit. They are covered with meshes in order to close the resonator
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Figure 3.7: Sketch of the x-y cross section of the sextupole magnet, red lines symbolize
magnetic field lines. The beam direction is perpendicular to the x-y plane
[19].

for the oscillating field and are also equipped with a beam stopper to cut out
the middle part of the beam. This is important, since the H̄ in the center
cannot be analyzed by the sextupole which has zero field in the center (see
figure 3.7).

3.2.3 The Antihydrogen Detector

At the end of the spectrometer line a detector is needed in order to monitor
events. When detecting antihydrogen, one comes across the following challenge:
the production rate is much lower than in hydrogen experiments and lower than
the rate of cosmic rays and their electromagnetic showers. Also, upstream
annihilations will contribute to the background. So a high antihydrogen
detection efficiency is needed.

The detector for the HBAR HFS experiment (called Compact Pion Tracking
Detector (CPT detector)) will be consisting of a BGO detector and a two layer
hodoscope made out of scintillators [24]. In figure 3.8, one can see the detector
with only one layer of hodoscope before the upcoming upgrade. When an
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3 Experimental Setup

Figure 3.8: The Compact Pion Tracking Detector (CPT Detector).

antihydrogen atom collides with the BGO, the annihilation products which
are mainly Pions will deposit energy on the BGO and in the hodoscopes. The
signal from the scintillator bars of the hodoscope will be converted to an
electrical signal by SiPM (Silicon PhotoMultiplier) detectors.

The identification of antihydrogen events will be done by studying the tracks
in the detector using a Hough analysis as well as information on the energy
deposit on the central BGO detector.

18



4 Simulation of the GSHFS
Transitions of H/H̄

4.1 Introduction - Interaction of atoms with a
magnetic field

In order to determine the evolution of the state of the atom with time in a
radiation field, one must solve the time-dependent Schrödinger equation:

i~
∂ψ(r, t)

∂t
= Ĥψ(r, t) (4.1)

where Ĥ is the Hamiltonian of the system, the state ψ given by |ψ(t)〉 =
Σi |i〉 ci(t) with the base states |i〉 and the amplitudes ci(t) = 〈i |ψ〉 to find the
state ψ in one of the base states i at time t. By knowing how the coefficients
ci(t) vary with time, we know how the ψ(t) evolve with time.

In case of an unperturbated system e.g. an isolated atom, we have solutions
for the time-dependent Schrödinger equation [33]:

ψn(r, t) = e−i En

~
t |n〉 , Ĥ0 |n〉 = En |n〉 (4.2)

If the system interacts with a field, the total Hamiltonian of the system is
given by:

Ĥtotal = Ĥ0 + ĤI (4.3)

with the Hamiltonian of the unperturbated system Ĥ0 and the interaction
Hamiltonian ĤI .

At first we will consider a simple atom with two non degenerate levels E0 and
E1 and use a semi classical approach, where we will use the quantummechanical
description for the states from above and describe the field classically.
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Figure 4.1: The two level system with states |0〉 and |1〉 and energies E0 and E1, the
transition frequency ω01, the frequency of the oscillating field ω and the
detuning ∆.

4.1.1 The Two Level Atom

It is worth considering the case of an atom with only two levels since, if the
frequency of the field is near the transition frequency of these two levels, only
the two atomic states of interest are involved in the process [34].

For the two level system with states |0〉 and |1〉 and energies E0 and E1

(see figure 4.1), we have the wave function ψ(r, t) = c0(t)ψ0(r, t) + c1(t)ψ1(r, t)
with |c0(t)|2 + |c1(t)|2 = 1 and a transition frequency of ω01 = E1−E2

~
.

After inserting this into the Schrödinger equation (and some algebra), we
get the following equations for the coefficients ci(t):

i
dc0(t)

dt
= c0(t) 〈0|Ĥ|0〉 + c1(t)e

−iω01t 〈0|Ĥ|1〉 (4.4)

i
dc1(t)

dt
= c0(t)e

iω01t 〈1|Ĥ|0〉 + c1(t) 〈1|Ĥ|1〉 (4.5)

where 〈i|Ĥ|j〉 denote the matrix elements of Ĥ.
If the atom is now exposed to an oscillating magnetic field:

~B(t) = ~B1 cosωt (4.6)
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4 Simulation of the GSHFS Transitions of H/H̄

with the field amplitude B1 and the frequency ω, the atom interacts with
the magnetic field via its magnetic moment and ĤI is given by [35]:

ĤI = ~µ ~B(t) = ~µ ~B1 cosωt (4.7)

where µ denotes the magnetic transition moment between the two states.
With this, we can write the matrix elements of the interaction Hamiltonian:

〈i|ĤI |i〉 = 0 (4.8)

〈i|ĤI |j〉 = B1µij cosωt (4.9)

where µij = 〈i|µ|j〉 is the magnetic transition moment between the two
states i and j (see 4.4.1 for an example).

Furthermore, we define the Rabi frequency [36]:

ΩR =
µijB1

~
(4.10)

which characterizes the atom-field interaction strength. The equations 4.4
become [36]:

i
dc0(t)

dt
= ω0c0(t) + ΩRc1(t) cosωte−iω01t (4.11)

i
dc1(t)

dt
= ω1c1(t) + Ω∗

Rc0(t) cosωteiω01t (4.12)

using cosωt = 1
2(eiωt + e−iωt) and the approximation |ω − ω01| ≪ ω for

frequencies ω close to the transitions frequency (rotating wave approximation
[35]) and the initial conditions |c0(t)|2 = 1 and |c1(t)|2 = 0, we get the folloing
result at resonance ω = ω01:

|c0(t)|2 = cos2(ΩRt/2) (4.13)

|c1(t)|2 = sin2(ΩRt/2) (4.14)

which describe the probabilites of finding the atom in the ground or the
excited state after being in a radiation field for a time t.
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4 Simulation of the GSHFS Transitions of H/H̄

4.1.2 Density matrices

Since we are actually interested in the probabilities |ci(t)|2 rather than c1(t),
it is more convenient to use the density matrix formalism. The time evolution
of the density matrix is given by the von Neumann equation [37]:

dρ̂

dt
=
i

~
[ρ̂, Ĥ] (4.15)

where ρ̂ is the density operator for a state is and given by: ρ̂ = |ψ〉 〈ψ| and
may be written as a matrix e.g. for the two level atom:

ρ̂ =

(

c0

c1

)

(

c⋆
0, c⋆

1

)

=

(

|c0|2 c0c
⋆
1

c1c
⋆
0 |c1|2

)

=

(

ρ00 ρ01

ρ10 ρ11

)

(4.16)

with ρ00 + ρ11 = 1.
The meaning of the matrix elements of the operator ρ̂ is the following: The

diagonal matrix elements are the square of the probability amplitude to be in a
certain state - so they give us the probability of finding the atom in this state.
The off-diagonal elements are called coherences and express the interference
between states [37].

In order to describe mixed states, we write [34]: Σkpk |ψk〉 〈ψk| = Σkpkρk

with the probability pk of the system being in state ψk.
With dρij/dt = ci(t)(dc∗

j(t)/dt) + (dcj(t)/dt)c∗

j(t), equations 4.11 and again
the rotating wave approximation, we get the optical Bloch equations for the
density matrix elements of the two level system [36]:

dρ11

dt
= −dρ00

dt
= −iΩR

2
(ei(ω01−ω)tρ01 − e−i(ω01−ω)tρ10) (4.17)

dρ01

dt
=
dρ∗

10

dt
= i

ΩR

2
e−i(ω01−ω)t(ρ00 − ρ11) (4.18)

by substituting ρ′

01 = ei(ω01−ω)t and ρ′

10 = e−i(ω01−ω)t, the equations simply
become [36]:
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dρ′

11

dt
= −dρ′

00

dt
= −iΩR

2
(ρ′

01 − ρ′

10) (4.19)

dρ′

01

dt
=
dρ′∗

10

dt
= i

ΩR

2
(ρ′

00 − ρ′

11) + i(ω0 − ω)ρ′

01 (4.20)

with ρ′

ii = ρii.
Analogous, the optical Bloch equations for the four level atom can be derived.

In this case, we will have a 4×4 density matrix and Hamiltonian, resulting in 10
independent equations for the ρij. By calculating the matrix elements 〈i|Ĥ|j〉
of the trasitions of interest (see section 4.4.1), the equations will simplify. For
the σ1 transition, static and oscillating field will be parallel, so the entry of the
transition with ∆mF = 0 is relevant, whereas for the fields being perpendicular
to each other, transitions with |∆mF | = 1 will be excited [38].

In the next section, the numerical method to solve the equations used in
the simluation program will be discussed.

4.2 Solving the optical Bloch equations
numerically

In order to solve the optical Bloch equations, we use the Rung-Kutta-Fehlberg
method with adaptive stepsize control.

Runge-Kutta methods are a group of iterative algorithms to numerically
solve ordinary differential equations:

dy

dt
= f(t, y) (4.21)

with y being an unknown function depending on t.
The most commonly used member is the Runge-Kutta method of fourth

order where four evaluations of the right-hand side of the differential equation
are needed in order to calculate an estimation of yn+1 after a step h [40]:
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k1 = hf(tn, yn) (4.22)

k2 = hf(tn +
1

2
h, yn +

1

2
k1) (4.23)

k3 = hf(tn +
1

2
h, yn +

1

2
k2) (4.24)

k4 = hf(tn + h, yn + k3) (4.25)

yn+1 = yn +
1

6
k1 +

1

3
k2 +

1

3
k3 +

1

6
k4 + O(h5) (4.26)

where the kn denote four increments which are evaluations of the right side
at certain ts and are then averaged to get yn+1.

The Runge-Kutta methods treat every step in the interval of integration T
the same - the information of a truncation error after one iteration is lost. In
this manner, it is likely that the stepsize is chosen too large and the solution
will be useless.

In order to avoid this, the Runge-Kutta method will be combined with
an adaptive stepsize control. This requires that the algorithm provides an
estimation of the truncation error for every step.

In case of the Runge-Kutta-Fehlberg method, six function evaluations are
calculated along each step which can then be combined to get a fourth and
a fifth order solution. The difference between the two solutions gives an
estimation of the truncation error and is used as an indicator whether the
stepsize is too large or too small. In general, the fifth order method is [40]:

k1 = hf(tn, yn) (4.27)

k2 = hf(tn + c2, yn + a21k1) (4.28)

... (4.29)

k6 = hf(tn + c6h, yn + a61k1 + ...+ a65k5) (4.30)

y5
n+1 = yn + b1k1 + b2k2 + b3k3 + b4k4 + b5k5 + b6k6 + O(h6) (4.31)

y4
n+1 = yn + b∗

1k1 + b∗

2k2 + b∗

3k3 + b∗

4k4 + b∗

5k5 + b∗

6k6 + O(h5) (4.32)

where the constants aij, bi and ci we are using are determined by Dormand
and Prince [40].
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The estimated truncation error is thus given by:

∆ = y5
n+1 − y4

n+1 (4.33)

Because we are solving a set of 16 equations, ∆ will actually be a vector
with 16 entries. In the program, we use the norm of this vector as an error
estimate err.

In order to keep ∆ in certain boundaries during the computation (|∆| ≤
bound), we will now need to introduce an absolute and a relative error tolerance
for ∆ which should be considered by the algorithm:

bound = atol + |y| rtol (4.34)

The error err will then be given by [40][39]:

err =

√

√

√

√

√

1

N

N−1
∑

i=0

(

∆i

boundi

)2

(4.35)

and the calculated step will only be accepted if err ≤ 1, otherwise it will be
recalculated. If the stepsize is now too large, how can a "better" value for the
recalculation be predicted?

Since ∆ scales with h5 (4.27), err will too and the relation between two
different stepsizes h0 and h1 is given by:

h0 = h1

∣

∣

∣

∣

∣

err0

err1

∣

∣

∣

∣

∣

1/5

(4.36)

The strategy will now be to assume h0 is the "ideal" stepsize resulting in
err0 = 1, then eq. 4.36 tells us how much the stepsize needs to be decreased
or how much we are allowed to increase it.

Since the error estimation is not exact and experience has shown that
increasing/decreasing the stepsize too dramatically is not wise [40], we will
use a safety factor S which is a few percent smaller than 1. We get [40]:

hn+1 = Shn

(

1

errn

)1/5

(4.37)
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This stepsize control can be further improved when turning to control theory.
Using the so called PI (proportional and integral feedback) controller, we get:

hn+1 = Shnerr−α
n err

β
n−1 (4.38)

For values of β = 0 and α = 1/k with k being the order of the method we
will arrive at equation 4.38 again. A nonzero β will lead to a higher stability
but will decrease the speed of the algorithm. We will use β = 0.4/k and
α = 1/k − 0.75β which turned out to be a good compromise [41].

Figure 4.2: Flow diagram of the Runge-Kutta-Fehlberg algorithm.

4.3 Geometry and Setup Implementation

The hbar_gshfs simulation program is based on the particle physics toolkit
Geant4 (GEometry ANd Tracking) which was developed at CERN [42].

However, since Geant4 is mainly designed for high energy physics, we had
to implement processes which are important to us but are neglected in Geant4.
These are for example: the tracking of neutral particles in magnetic fields,
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4 Simulation of the GSHFS Transitions of H/H̄

Figure 4.3: Rendered geometry of the whole setup implemented in Geant4. From left
to right: cusp trap, cavity inside see-through shielding and scintillators
(blue plates) for beam normalisation, sextupole magnet and detector
(yellow).

higher excited states and their deexcitation processes and atomic transititons
in a radiofrequency field which are discussed in this work.

In figure 4.3, one can see a picture of the geometry of the setup currently
implemented in the simulation program. Technical drawings were used for
dimensions. Figure 4.4 shows a close-up of the cavity in the setup.

The geometry of the cavity alone is shown in figure 4.5, the front flange
removed, so the inside of the cavity is visible. One can see the resonator plates
and wings, as well as the beam blockers at the back and front entrance. The
static magnetic field is provided by the Helmholtz coils (inside yellow support
structure).

In table 4.1 an overview of all geometry parameters used in the following
simulations is shown.

In order to obtain a resonance scan, the frequency of the oscillating field
inside the cavity is varied around the expected transition frequency. For a
certain number of scan points N0 particles per point are shot through the
setup.

Beam and source settings are summarized in table 4.2. The source center
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Figure 4.4: Rendered geometry of the spin-flip cavity inside the setup. Shielding and
scintillator counters are see-through.

Figure 4.5: Rendered geometry of the spin-flip cavity as implemented in the Geant4
program. Dimensions were obtained from technical drawings.
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Figure 4.6: Detector counts for different temperatures (K) and magnetic fluxdensity
(T) of the sextupole magnet.

is set to the point (0, 0, −0.5m) which has a distance of 44.75 cm from the
cavity entrance. Coordinates used are with respect to cavity center.

The beam is shot in z-direction and has a FWHM of 10 cm - N0 is then
the number of particles inside the 10 cm. The distribution in the xy-plane is
gaussian and the beam is set to be parallel without divergence.

Every particle has a random initial state (one of the four groundstates)
depending on the beam polarization. For all the following resonance scans,
a polarization of 70% LFS and 30% HFS has been chosen since this is the
expected polarization of the CUSP trap [25].

Resonance scans for different initial polarizations are shown in figure 4.7.
For an unpolarized beam (50% LFS, 50% HFS) of course, the transition cannot
be seen. With increasing percentage of LFS, the amplitude of the two peaks
increases linearly.

The beam energy can be chosen to be fixed or obtained from beam temper-
ature resulting in an beam velocity which is Maxwell-Boltzmann distributed.

Before and after the cavity, two beam blockers are placed in order to cut
out the central part of the beam. This is necessary since the sextupole field
is 0 at its center and therefore cannot analyze the spins of particles passing
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Figure 4.7: Scans with different initial polarization: red: 50% LFS, 50% HFS (unpo-
larized beam), green: 60% LFS, 40% HFS, blue: 70% LFS, 30% HFS,
magenta: 90% LFS, 10% HFS.

through the center.
At a distance of 53.75 cm after the cavity, the beam enters the sextupole

magnet which analyzes the spin state of the antihydrogen atoms, defocusing
the HFS and focusing the LFS on the detector. Depending on the beam energy,
the strength of the sextuploe field needs to be adjusted. Figure 4.6 shows
particles counted by the dummy detector depending on different temperatures
and B-field strength of the sextupole magnet.

In order to detect the antihydrogen atoms at the end of the beamline a
dummy detector is used which is a stainless steel disc with a diameter of 12
cm and distance of 71 cm from the sextupole. Here all antihydrogen atoms
hitting the disc will simply be counted (Ndet). The background events will be
ignored for now, this results in a detection efficiency of 100%.
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Parameter Value (m) Comment

Cavity dimensions

Center of cavity (0,0,0) coordinates w.r.t. world volume
Inner diameter 0.317 of cylindrical tank
Outer diameter 0.460
Cavity length 0.105
Flange diameter 0.459 before and after cavity
Flange hole diameter 0.1302
Resonator thickness 0.004
Resonator width 0.21005
Resonator separation 0.104
Helmholtz coil outer diameter 0.454
Helmholtz coil thickness 0.016
Helmholtz coil distance 0.212
Shielding thickness 0.001
Inner shielding length 0.531
Inner shielding hight 0.606
Outer shielding length 0.561
Outer shielding hight 0.636
Shielding hole diameter 0.14
Wings length 0.053
Wings width 0.036
Wings thickness 0.004

Beam Stopper

Position 1 (0,0,-0.056) beam stopper before cavity
Position 2 (0,0,-0.0525) beam stopper after cavity
Thickness 0.0035
Diameter 0.04

Sextupole Magnet

Position (0,0,0.59)
Length 0.22
Inner diameter 0.10
Outer diameter 0.16

Dummy detector stainless steel disc

Position (0,0,1.52)
Thickness 0.01
Diameter 0.12

Table 4.1: Geometry parameters used in the Geant4 simulations.
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Beam and source settings

Source position (0 m,0 m,-0.5 m) in front of the cavity
Source FWHMX 0.1 m
Source FWHMY 0.1 m
Source FWHMZ 0.0 m
Polarization 70% LFS, 30% HFS
Particles shot N0 per scan point
Detector hits Ndet per scan point
Normalised counts Ndet/N0 y-axis of scan plots
Error bars

√
Ndet/N0

Fit parameters

baseline b
Amplitude A amplitude of the two gaussian peaks
Central frequency νi i denoting the transition i.e. 0, σ or π
Peak separation s peak to peak sep. of the two gaussian
Standard deviation σ
Full width at half maximum f 2.355σ
Degrees of freedom Nf

Table 4.2: Beam and source settings used in the simulations. Overview of fit
parameters as discussed in section 4.5.1.

4.4 Implementation of the Magnetic Fields

4.4.1 The Oscillating Magnetic Field

The strength of the B-field inside the cavity depends on the power the cavity
is operated with. The input power of the cavity is given by [43]:

P =
ω0W

Q
(4.39)

with the resonance frequency ω0, the stored energy W in the volume and the
quality factor of the cavity Q (in all following power calculations a Q factor of
100 was used). The stored energy corresponding to a certain field amplitude
was determined by simulations [43], with the following result: 1 Joule stored
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energy corresponds to a H-field amplitude of 2.7 × 104 A/m. Using H = B
µ0

this gives a B-field of 340 T.
The stored energy w per unit volume is given by:

w =
B2

a

2µ0
(4.40)

With the ingredients above, one can calculate the input power for the field
amplitude of interest.

In order to calculate the optimum oscillating field strength inside the cavity,
we consider the probabilty of a two-state atom being in the second state if the
system was certainly in state 1 at the beginning [44]:

|C2(t)|2 ∝ sin2(Ωt/2) (4.41)

with the Rabi frequency Ω between the two states. The atoms spend the
average time t inside the oscillating field of the cavity, which is calculates by
t = Lc/v̄ where Lc denotes the length of the cavity in beam direction and
v̄ the most probable velocity of the atoms (Maxwell-Boltzmann distributed
velocities assumed):

v =

√

2kT

m
(4.42)

If now the Rabi frequency fulfills the condition:

Ω = π/t (4.43)

the probability in equation 4.41 has a maximum and spin flips occur.
The strength of the oscillating field is linked to the interaction Hamiltonian

which is related to the Rabi frequency by [45]:

~Ωij = Hij (4.44)

To calculate Ωij for the transitions of interest we need to determine the
corresponding matrix elements Hij.
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The σ1 transition

To excite the transition between (1,0) and (0,0), an oscillating magnetic field
parallel to the static magnetic field is necessary, assuming:

~B = Ba~z sinωt (4.45)

with the field strength Ba. The Hamiltonian Ĥ = −~µ ~B with ~µ = ~µS + ~µI

= µBgS
~S/~ + µNgI

~I/~ is then given by:

Ĥ =
~Ba

~
sinωt(µBgS

~Sz + µNgI
~Iz) (4.46)

The matrix elements of Ĥ for the σ1 transition is then given by:

Hσ1
= 〈00|Ĥ|10〉 (4.47)

Since the quantization axis is z as defined by the static magnetic field, the
base |Sz, Iz〉 is used and we have:

|00〉 =
1√
2

(|↑↓〉 − |↓↑〉)

|11〉 = |↑↑〉

|10〉 =
1√
2

(|↑↓〉 + |↓↑〉)

|1-1〉 = |↓↓〉

Thus, for the matrix element we get:

Hσ1
= −Ba

4
sinωt(µBgS − µNgI) (4.48)

and with equation 4.44, we can calculate the Rabi frequency for the σ1

transition:

Ωσ1
=
Ba

2~
(µBgS − µNgI) (4.49)
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and together with equation 4.43 and the approxmiation µBgS −µNgI ≈ µBgS

because of µN = me/mpµB , for the optimum oscillating magnetic field strength,
we get:

Ba =
2π~

tµB
(4.50)

In oder to test the above estimation of the oscillating field strength and
power, the spin flip probability for the σ1 transition was calculated for different
velocities.

Using equation 4.42 we get a most probable velocity for 50 K of about 900
m/s which gives us a power estimation of ≈ 0.03 W with the above calculation.

The power in the cavity was therefore set to 0.03 W and a beam of 4000
atoms all in the state (1,0) and with an equally distributed velocity ranging
from 0 zu 1500 m/s was shot through the cavity. The static magnetic field in
the cavity was set to 0. Figure 4.8 shows the probability of the atoms being
in state (0,0) after the cavity i.e. the probabilty for the σ1 transition. One
can nicely see the maxima of the probability at about 900 m/s.

The oscillations of probability at lower velocities can be unterstood by taking
a look at the probability in equation 4.41 which has a sin2(t) dependence on
time. Substituting the time t by the velocity, we get a probability with a
sin2(1/v) dependence which can be nicely seen in figure 4.8.

The π1 transition

In order to excite the transitions with ∆mF = ±1, in particluar from (1,-1) to
(0,0), static and oscillating field need to be perpendicular to each other, we
may assume without loss of generality:

~B = Ba~x sinωt (4.51)

The Hamiltonian takes the form: Ĥ = Ba

~
sinωt(µBgS

~Sx + µNgI
~Ix). The

determination of Ba for the π1 transition is then analogue to the above
calculation and we get a Rabi frequency of:

Ωπ1
=

Ba

2
√

2~
(µBgS − µNgI) (4.52)
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Figure 4.8: Probability of the atoms being in state (0,0) after the cavity i.e. the
probabilty for the σ1 transition. A beam of 4000 antihydrogen atoms all
in the state (1,0) and with an equally distributed velocity ranging from
0 zu 1500 m/s was used.

and for the amplitude of the oscillating field:

Ba =

√
2π~

tµB
(4.53)

The same test as for the σ1 tansition was also done for the π1 transition.
Again a beam of 4000 atoms this time all in the state (1,-1) and with an
equally distributed velocity ranging from 0 zu 1500 m/s was shot through the
cavity. Figure 4.9 shows the probability of the atoms being in state (0,0) after
the cavity i.e. the probabilty for the π1 transition.

Here, the maxima is at 1100 m/s. Note also, that the probability at the
maxima is about 0.3. For the σ1 transition, the probabilty at this point is
about 0.9. A possible explanation could be, that at an angle of 90◦ between
static and oscillating field all transitions with |∆mF | = 1 might be excited
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Figure 4.9: Probability of the atoms being in state (0,0) after the cavity i.e. the
probabilty for the σ1 transition. A beam of 4000 antihydrogen atoms all
in the state (1,-1) and with an equally distributed velocity ranging from
0 zu 1500 m/s was used.

whereas at an angle of 0◦, only one transition with |∆mF | = 0 is possible.

4.4.2 The Static Magnetic Field

For the static magnetic field inside the cavity, one can choose between two
ways of realisation:

1. The B-field is equally distributed and set to a constant value and for
every particle entering the cavity. This might seem crude at first glance,
but is still useful when studying effects of e.g. beam temperature and
keeping the B-field completely homogeneous while doing so, see section
4.5.2.

2. Measured or simulated fieldmaps of the B-field inside the cavity volume
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can be used to gain more realistic results. To obtain accuracy, the
fieldmaps are cubic spline interpolated in an extra program before they
are used in the simulations. The data files will be read in by the hbar_gshfs

program and will then be ordered in a 3-dimensional binary tree in order
to speed up the search for the nearest neighbours.

Histograms of measured and computationally generated fieldmaps are shown
in figures 4.29 and 4.28.
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Figure 4.10: Graphical illustration of the fit function and fit parameters.

4.5 Simulation Results

4.5.1 Fitting the Scans

In order to analyze the simulated data, the following function is used to fit
the resonance scans:

G(x) = b− Af(x, νi − s, σ) − Af(x, νi + s, σ) (4.54)

with the baseline b, the amplitude A, the mean value νi, the peak separation
s and the standard deviation σ. f is given by:

f(x, νi, σ) =
1

σ
√

2π
exp−

1

2(
x−νi

σ )
2

(4.55)

An overview of the fit parameters is shown in table 4.2 and a graphical
illustration can be seen in figure 4.10.

Note, that this fit function is used for reasons of simplicity and does not
describe the side maxima and also the central peak not too well.
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Figure 4.11: Velocity distribution at the detector using N0 = 105 and a temperature
of 50 K.

4.5.2 Dependence on Beam Temperature

For all the following scans high statistics (N0 = 105 antihydrogens) and a
completely homogeneous static magnetic field were used in order to study the
effect of different velocity distributions of the beam on the scans. In figure 4.11
the velocity distribution at the detector for atoms with a Maxwell-Boltzmann
distributed velocity obtained from simulations is shown. When comparing to
monovelocitic beam, the mean velocity of the histograms is used.

Figures 4.12, 4.13 and 4.14 show resonance scans of the σ1 transition at
different temperatures. 20 K, 50 K and 90 K where chosen. Note the offset of
the baseline between monovelocitic simulated scans and scans with Maxwell-
Boltzmann distributed velocity which is a result of the sextupole whose strength
is set to focus the most probable velocity of the beam.

Also for the MB beam, the side maxima wash out completely.
In figure 4.15, the peak amplitude for scans of the gaussian peaks is plotted
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Figure 4.12: Scans of the σ1 transition at 20 K. Left: σ1 transition for a monoenergetic
beam (green) and a beam with Boltzmann distributed velocity (red).
Right: Same as left, only with an downward shift of the baseline for
the green scan in order to allow better comparision. 105 antihydrogen
atoms per scan point were used and a polarization of 70 % LFS and 30
% HFS.

depending on the beam temperature. Resonance scans with temperatures
ranging from 20 K to 90 K with steps of 10 K were done. For the scans
with the monoenergtic beam the velocity was set to the mean velocity of the
Maxwell-Boltzmann distribution.

Comparing green and red curves, one can see a clear offset in amplitude
which stays approximately constant for the different temperatures. Note that
in the right scan plots a downward shift was applied to the monovelocitic scan
in order to allow better comparision.

The FWHM of the gaussians of the fit in dependence of temperature is
shown in figure 4.16. With higher temperature (or velocity, in case of the
monoenergetic beam) the peaks get broader. Also, comparing the green and
red points, one can not see a big difference.

Figure 4.17 shows the error of the central peak position for varying tempera-
tures. Again one notices an offset between results of the monoenergetic beam
and the results using a Maxwell-Boltzmann distributed velocity, the latter
one having a higher error of ≈ 42 %. As expected, the error obtained by fit
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Figure 4.13: Scans of the σ1 transition at 50 K. Left: σ1 transition for a monoenergetic
beam (green) and a beam with Boltzmann distributed velocity (red).
Right: Same as left, only with an downward shift of the baseline for
the green scan in order to allow better comparision. 105 antihydrogen
atoms per scan point were used and a polarization of 70 % LFS and 30
% HFS.

increases with higher velocity.
In figure 4.18 the peak separation for different temperatures is shown. In

increases with temperature and the difference between the monovelocitic
simualtions and the MB beam simulations is marginal.

Since we use a beam with Maxwell-Boltzmann distributed velocity, the most
probable velocity of the particles is proportional to

√
T . Therefore Figure 4.19

shows peak separation and FWHM of the gaussian peaks in dependence of√
T in order to investigate the velocity dependence of the structure of the

resonance spectra. It can be seen that simulation results of peak separation
and FWHM increase with similar form with temperature.

The plots in figure 4.20 show a comparision between calculated FWHM using
equations 3.1 and 3.2 and simulated FWHM in dependence of temperature.
One can see that the peak width for the B-field configuation of the ASACUSA
cavity is much narrower than with the constant B-field assumed for the
calculation.

All fit results plotted in this section can be found in the Appendix, see 6.1.
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Figure 4.14: Scans of the σ1 transition at 90 K. Left: σ1 transition for a monoenergetic
beam (green) and a beam with Boltzmann distributed velocity (red).
Right: Same as left, only with an downward shift of the baseline for
the green scan in order to allow better comparision. 105 antihydrogen
atoms per scan point were used and a polarization of 70 % LFS and 30
% HFS.
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Figure 4.15: Amplitude of the two gaussians in dependence of the temperature for the
monoenergetic beam (green) and the beam with Boltzmann distributed
velocity (red).
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Figure 4.16: Peak width of the two gaussians in dependence of the temperature
for the monoenergetic beam (green) and the beam with Boltzmann
distributed velocity (red).
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Figure 4.17: Error of the central peak position in dependence of the temperature
for the monoenergetic beam (green) and the beam with Boltzmann
distributed velocity (red).
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Figure 4.18: Peak Separation of the two gaussians in dependence of temperature.
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Figure 4.20: FWHM (kHz) in dependence of beam temperature (K). Left: FWHM
for a monovelocitic beam. Red points symbolize the calculated values
for the FWHM using equation 3.1. In case of the simulation results
(green points), the beam velocity is set to the most probable velocity
of the corresponding Maxwell-Boltzmann distribution. Right: FWHM
for a beam with Maxwell-Boltzmann distributed velocity. Red points
symbolize calculated results, using equation 3.2. Green points stand for
the FWHM of simulation results.
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Figure 4.21: σ1 scans for different temperatures. Red points represent simulations
with power adjusted to the temperature, green points show results with
power kept constant at power for 50 K (0.0374 W). 105 antihydrogen
atoms per scan point were used and a polarization of 70 % LFS and 30
% HFS.

4.5.3 Dependence on Cavity Power

The effect of the cavity power on the resonance scans was studied and the
resulting scans are shown in figure 4.21, 4.22 (σ1) and 4.23 (π1). Fit results
can be found in the Appendix, see 6.2.

The power calculated for 50 K (≈ 0.03 W) via equations 4.39 and 4.50 was
used for all temperatures (green points) and compared with simulation results
using the adjusted power (red points). The static magnetic field was kept
constant and without inhomogeneities.

The difference between these two results is barely visible. The peak width,
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Figure 4.22: σ1 scans for different temperatures. Red points represent simulations
with power adjusted to the temperature, green points show results with
power kept constant at power for 50 K. 105 anti hydrogen atoms per
scan point were used and a polarization of 70 % LFS and 30 % HFS.
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Figure 4.23: π1 scans for different temperatures. Red points represent simulations
with power adjusted to the temperature, green points show results with
power kept at power for 50 K. 105 anti hydrogen atoms per scan point
were used and a polarization of 70 % LFS and 30 % HFS.
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Figure 4.24: Peak amplitude of the two gaussians in dependence of the temperature
for σ1 scans with power kept constant (green) and power adjusted (red).

see figure 4.25, seems not to be very affected by the difference in power. Only
for 20 K which is the lowest temperature used and the fartherest away from
50 K a difference in peak amplitude (see figure 4.24) and fitting error of the
central peak postion (see figure 4.26) is noticable. The same behaviour was
found for simulation results of the π1 transition, see for example resonance
scans in figure 4.23.
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Figure 4.25: Peak width of the two gaussians in dependence of the temperature for
σ1 scans with power kept constant (green) and power adjusted (red).
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Figure 4.26: Left: Relative error of the central peak position in dependence of the
temperature for the scans with power kept constant (green) and power
adjusted (red). Right: Relative deviation of the simulated νS (obtained
from simulated scans see e.g. figure 4.22) and the input frequency
νHF (see equation 2.1). Errorbars are calculated by gaussian error
propagation.
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Figure 4.27: Scans of the π1 (left) and the σ1 (right) transition with a field of zero
inhomogeneity with a beam of 105 monoenergetic (0.01 eV) antihydrogen
atoms and a polarization of 70 % LFS and 30 % HFS.

4.5.4 Dependence on Inhomogeneity of the Static
Magnetic Field

In the following the effect of inhomogeneities of the static magnetic field on
the resonance scans of both transitions will be studied. The focus will be
on the π1 transition which is very sensitive to homogeneities. All plotted fit
results can be found in the Appendix, see 6.3.

Again, high statistics will be used and a monoenergetic beam as well as a
beam with Maxwell-Boltzmann distributed velocity. Measured and simulated
fieldmaps will be used, their histograms are shown in figures 4.29 and 4.28.
For comparision, scans with a completely homogeneous field are displayed in
figure 4.27.

The scans in figure 4.30 show the simulation results of the π1 transition
using gaussian distributed fieldmaps for the static magntic field with different
standard deviation σ (expressed as a percentage of the mean value), for
histograms with different σ see figure 4.28.

The label at the bottom right represents the σ used with respect to the
mean value. For comparison, the last plot on the right shows the π1 scan using
a measured fieldmap. Red points symbolize results using antihydrogen atoms
with Maxwell-Boltzmann distributed velocity and green points results with a
monovelocitic beam. Note again, that in all scan plots a downward shift was
applied to the monovelocitic scan in order to allow better comparision.
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Figure 4.28: Histograms of the gaussian distributed fieldmaps with different σ used
to study the influence of inhomogeneity on the resonance scans.

Figure 4.31 shows the same for the σ1 transition. One can see, that the
effect of the inhomogeneity on the σ1 scans is barely visible - only the side
maxima fade a little. While the π1 scan is hardly visible at 0.5 %, one still
can see side maxima of the σ1 even at 10 %.

The parameters of the fit are analyzed in plots 4.32 to 4.34. As expected,
for the π1 transition the fitting error of the central peak position (fig. 4.32)
increases with inhomogeneity. The offset of green and red points grows with
inhomogeneity. The blue line represents the error of the fit using a completely
homogeneous field. With increasing σ, first the side maxima and then the
double peak structure wash out gradually.

For the σ1 transitions, the fitting error of νσ1
has a small offset comparing

monovelocitic beam and MB beam which barely changes with increasing σ.
Regarding the FWHM of the fitted gaussian peaks for the π1 transitions, one

sees that it increases with inhomogeneity as well (figure 4.33). For decreasing
σ, the FWHM approaches the zero inhomogeneity result. Also, the width
seems not to be much affected by having a beam with 50 K instead of a
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Figure 4.29: Histograms for the measured fieldmaps with different field strengths
used for the simulations.
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Figure 4.30: scans of the π1 transition with a gaussian distributed static B-field with
different inhomogeneities (the label at the bottom right denotes the
standard deviation expressed as percentage of the mean value). Green
points represent results with a beam of constant velocity and red points
of a beam with Maxwell-Boltzmann distributed velocity. For better
comparision, the spectra of the monovelocitic beam are shifted to be
on the same level with the 50 K results. A beam with 105 antihydrogen
atoms per scan point and a polarization of 70 % LFS and 30 % HFS
was used. For comparision, the plot in the bottom right shows a scans
with a measurend fieldmap used.
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Figure 4.31: scans of the σ1 transition with a gaussian distributed static B-field with
different inhomogeneities (the label at the bottom right denotes the
standard deviation expressed as a percentage of the mean value). For
better comparision, the spectra of the monovelocitic beam are shifted
to be on the same level with the 50 K results. A beam with 105 anti
hydrogen atoms per scan point and a polarization of 70 % LFS and 30
% HFS was used. For comparision, the plot in the bottom right shows
a scans with a measurend fieldmap used.

monoenergetic one.
Note that for the σ1 for reasons of visibility the range of the y-axis is not

the same as for the π1 plot. The increasing inhomogeneity has only a very
small effect on the FWHM.

In figure 4.34 the peak amplitude is shown in dependence of the inhomo-
geneity. Looking at the π1 results, one observes a decrease in amplitude with
increasing σ as the scan washes out. Again, one may notice the offset between
the results of the 50 K beam and the monoenergetic beam which decreases
with inhomogeneity.
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Figure 4.32: Error of the central peak position in dependence of inhomogeneity for
π1 (left) and σ1 (right) scans with velocity vm (red) and Boltzmann
distributed velocity (red). The blue line shows the central peak error
of a scan with zero inhomogeneity. The same range for the y-axis was
chosen for comparision.
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Figure 4.33: FWHM in dependence of inhomogeneity for π1 (left) and σ1 (right)
scans with velocity vm (red) and Maxwell-Boltzmann distributed velocity
(red). The blue line shows the FWHM of a gauss peak of the scan with
zero inhomogeneity.
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Figure 4.34: Peak amplitude in dependence of inhomogeneity for π1 (left) and σ1

(right) scans with velocity vm (red) and Maxwell-Boltzmann distributed
velocity (red). The blue line shows the peak fitting error of a scan with
zero inhomogeneity.

For fitting results of the amplitude of the σ1 scans also have the offset
between results of monovelocitic and MB beam, but it stays approximately
the same for increasing inhomogeneity.
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4.5.5 Dependence on Statistics

Since the production rate of antihydrogen is expected to be low, the study
of scans and scan parameters in dependence of the number of antihydrogen
atoms per scan point might provide insightful information.

In the following the effect of particle statistics on the σ1 transition is
investigated using a 50 K beam and different measured fieldmaps in order to
allow an extrapolation to zero field for different particle numbers per scan
point.

The outcoming scans are shown in figures 4.35 to 4.40 and for quantitative
fit results, see Appendix 6.4.

The number of atoms per scan point N0 ranges from 600 to 2000 in steps
of 100 particles. Down to N0 = 900 the resonance structure is clearly visible.
Beneath that, the fitting algorithm still seems to find the two gaussian peaks
but they are hardly visible to the naked eye.

In figure 4.41, the extrapolation for N0 = 600, 1000 and 2000 antihydrogen
atoms is shown as an example and the resulting fitting error and relative error
for the transition frequency at 0 magnetic field for all statistics can be seen in
figure 4.42. As expected, the error increases with decreasing N0. Figure 4.43
shows deviation and relative deviation from the measured hyperfine transition
frequency (see 2.1).
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Figure 4.35: Scans of the σ1 transition with different number of particles per scan
point (see right bottom corner of plots). Green lines show the fit of the
simulated data. A fieldmap with µ = 0.88 G and rms = 0.0053 G was
used, as well as a beam polarization of 70 % LFS and 30 % HFS.
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Figure 4.36: Scans of the σ1 transition with different number of particles per scan
point (see right bottom corner of plots). Green lines show the fit of the
simulated data. A fieldmap with µ = 0.88 G and rms = 0.0053 G was
used, as well as a beam polarization of 70 % LFS and 30 % HFS.
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Figure 4.37: Scans of the σ1 transition with different number of particles per scan
point (see right bottom corner of plots). Green lines show the fit of the
simulated data. A fieldmap with µ = 2.19 G and rms = 0.014 G was
used, as well as a beam polarization of 70 % LFS and 30 % HFS.
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Figure 4.38: Scans of the σ1 transition with different number of particles per scan
point (see right bottom corner of plots). Green lines show the fit of the
simulated data. A fieldmap with µ = 2.19 G and rms = 0.014 G was
used, as well as a beam polarization of 70 % LFS and 30 % HFS.
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Figure 4.39: Scans of the σ1 transition with different number of particles per scan
point (see right bottom corner of plots). Green lines show the fit of the
simulated data. A fieldmap with µ = 4.39 G and rms = 0.029 G was
used, as well as a beam polarization of 70 % LFS and 30 % HFS.
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Figure 4.40: Scans of the σ1 transition with different number of particles per scan
point (see right bottom corner of plots). Green lines show the fit of the
simulated data. A fieldmap with µ = 4.39 G and rms = 0.029 G was
used, as well as a beam polarization of 70 % LFS and 30 % HFS.
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Figure 4.41: Zero field extrapolation for different numbers of antihydrogen
atoms per scan point: 600 H̄ (red), 1000 H̄ (green), 2000 H̄ (blue).
Equation 4.61 was used to fit the simulated data.
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Figure 4.42: Error and relative error of ν0 determined by extrapolation to zero
B-field in dependence of number of particles per scan point used.
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termined by extrapolation to zero B-field in dependence of number
of particles per scan point used. The frequency νHF denotes the
input frequency and νS the simulated hyperfine transition fre-
quency obtained by fits. Errorbars are obtained by gaussian error
propagation.
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transition transition frequency (MHz) error (MHz)
σ1 1420.407847499 5.372197 ×10−5

π1 1421.627406724 1.93374 ×10−4

Table 4.3: Transition frequencies and errors obtained from fit for: µB = 0.88 G
and rmsB = 0.0053 G, NH̄ = 105, angle between fields of 0◦ and 90◦,
polarisation of 70% LFS, 30% HFS and Maxwell-Boltzmann distributed
beam with 50 K.

4.5.6 Transition Frequency at Zero Magnetic Field

In the following section, the two different methods to obtain the transition
frequency at zero static magnetic field will be discussed and compared.

... using σ1 and π1 transition at the same B-field

In order to determine the σ1 and π1 transition frequency and study the effect
of different Helmholtz coil configurations, the following resonance scans where
done.

First of all, a beam with Maxwell-Boltzmann distributed velocity at 50 K
and a field angle of 0◦ for the σ1 and 90◦ for the π1 transition was used which
resulted in the scans shown in figure 4.44. The transition frequencies obtained
by fit are listed in table 4.3. Using the following equation, the transition
frequency at zero field was obtained:

ν0 =
g+

√

g+ν2
σ − 4g2

−ν2
π + 4g−νπνσ + g2

−
(2νπ − νσ)

g2
+ + g2

−

(4.56)

where g± = gI ±gJ . This formula was obtained using the Breit-Rabi formulae
for the two transitions. One gets for ν0:

ν0 = 1420.405 762 404 2 MHz ± 5.3910 × 10−5 MHz (4.57)

and a deviation from the measured value (see 2.1) of 1.063 75 × 10−5 MHz.
The relative error is:

er = 3.795 39 × 10−8 (4.58)
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Figure 4.44: The σ1 and π1 transitions with an angle of 0◦ and 90◦ respectively
between static and oscillating magnetic field, a B-field with µ = 0.88
G and σ = 0.0053 G (fieldmap), a beam with boltzmann distributed
velocities and 50K, a polarization of 70% LFS and 30% HFS.

transition transition frequency (MHz) error (MHz)
σ1 1420.407849839 7.52806 ×10−5

π1 1421.627295345 1.49478 ×10−4

Table 4.4: Transition frequencies and errors obtained from fit for: µB = 0.88 G
and σB = 0.0053 G, NH̄ = 105, angle between fields of 45◦ for both,
polarisation of 70% LFS, 30% HFS and Boltzmann distributed beam with
50K.

and the relative deviation 7.489 06 × 10−9.
Using a coil configuration of 45◦ for both transitions and a 50 K beam, one

gets for ν0:

ν0 = 1420.405 765 133 MHz ± 7.5540 × 10−5 MHz (4.59)

a deviation from the measured value (see 2.1) of 1.336 63 × 10−5 MHz and a
relative error of:

er = 5.318 20 × 10−8 (4.60)

The relative deviation is 9.410 20 × 10−9.
Plots of the scans and frequencies are shown in figure 4.45 and table 4.4.
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Figure 4.45: The σ1 and π1 transitions with an angle of 45◦ between static and
oscillating magnetic field, a B-field with µ = 0.88 G and rms = 0.0053
G (fieldmap), a beam with boltzmann distributed velocities and 50 K,
a polarization of 70% LFS and 30% HFS.
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Figure 4.46: Comparision of the σ1 (left) and π1 (right) transition scans from figures
4.44 and 4.45.

In order to better compare the scans, figure 4.46 shows the above scans in
one plot. Switching from an angle of 0◦ to 45◦ between static and oscillating
field, the peak amplitude decreases slightly. This effect seems to affect the
σ1 transition more than the π1 transition. It might be a consequence of the
additional transitons with ∆mF = ±1 which will not be excited using a 0◦

configuration.
Furhtermore, a peak asymmetry for the π1 transtion seems to arise when

switching from 90◦ to 45◦ angle. At the moment, this cannot be explained.
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... using the σ1 transition at different B-fields

The simulated resonance scans of the σ1 transition at different static magnetic
field strength can be found in figure 4.47. An angle of 0◦ between oscillating
and static B-field was used and otherwise the same conditions as for results in
figure 4.45 in order to allow comparision.

The extrapolation formula (Breit-Rabi formula):

νσ1
= ν0

√
1 + x2 (4.61)

was used in order to determine the zero field transition frequency. The plot
can be seen in figure 4.48 and for ν0 one gets:

ν0 = 1420.405 727 132 MHz ± 6.7691 × 10−5 MHz (4.62)

a deviation from the measured value (see 2.1) of 2.463 47 × 10−5 MHz and a
relative error of:

er = 4.765 61 × 10−8 (4.63)

The relative deviation is 1.734 34 × 10−8.
Comparing now the results of the two methods to determine ν0, the error of

the second one is higher by a factor of 1.12.
The question arises which N0 for the two methods is needed in order to

reach approximately the same error. In order to persue this question, scans
for the σ1 and π1 transition have been done using N0 = 6000 which is the
number of particles per scan point where the sensitive π1 transition becomes
clear. A calculation yields:

ν0 = 1420.405 988 741 MHz ± 3.099 85 × 10−4 MHz (4.64)

a deviation from the measured value (see 2.1) of 2.369 743 × 10−4 MHz and
a relative error of:

er = 2.182 37 × 10−7 (4.65)

The relative deviation is 1.668 356 × 10−7.
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Figure 4.47: σ1 scans at different magentic field strength, an angle between fields of
0◦, polarisation of 70% LFS, 30% HFS, 105 particles per scan point and
a Boltzmann distributed beam with 50K.

When trying to compare this method with the extrapolation to zero field
using only the σ1 transition, the influence of the inhomogeneity of the static
magnetic field on the π1 transition shows. Using a N0 of 6000 as well, we get
a result of:

ν0 = 1420.405 674 332 MHz ± 2.253 98 × 10−4 MHz (4.66)

a deviation from the measured value (see 2.1) of 7.743 47 × 10−5 MHz and a
relative error of:

er = 1.586 86 × 10−7 (4.67)

The relative deviation is 5.451 59 × 10−8.
So using N0 = 6000 and the current fieldmaps, the second method shows a

lower error which at first glance seems to be in disagreement with the result
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Figure 4.48: Extrapolation to zero B-field using the σ1 scans from figure 4.47. Er-
rorbars for both B-field and transition frequency are plotted, though
barely visible due to the small size.

at higher statistics.
Considering the effect of field inhomogenieties on the π1 transition, the most

likely explanation is that in order to reach lower errors the static magnetic
field needs to be more homogeneous. Otherwise the error of νπ is too large and
the method using both transtions becomes superior only for higher statistics
and/or a more homogeneous magnetic field.
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5 Summary and Outlook

The results and implementation of numerical simulations of hyperfine tran-
sitions of antihydrogen within the Geant4 framework using the ASACUSA
setup has been discussed.

An estimation of the power for the σ1 and π1 transitions has been calculated
and tested using the spin flip algorithm and good agreement has been found.

The influence of particle velocity within the beam on the resonance scans has
been examined. Comparing a monovelocitic beam to a beam with Maxwell-
Boltzmann distributed velocity showed that with the monovelocitic beam the
particle number reaching the detector was about 2.3 times higher which is
a result of the focusing effect of the sextupole magnet. Also, the amplitude
was about 2.5 times higher, whereas the FWHM was not affected by the MB
distribution of velocity.

The study of the effect of cavity power on the scans yields that small changes
of power do not affect the scans, which is probably because of the broad peak
around the velocity of choice in figures 4.8 and 4.9.

An investigation of the impact of inhomogeneities of the static magnetic
field inside the cavity has been done. The π1 transition which is very sensitive
due to its linear dependence on the magetic field strength shows that over
0.4%, the double peak structure is totally washed out. For the σ1 transition
on the other hand is not very influenced by increasing inhomogeniety - even
up to 10%.

The number of particles per scan point has been varied in order to study
the effect of statistics on the resonance scans. This has been done for different
magnetic field strength in order to allow an extrapolation to zero magnetic
field for every particle number. Down to 900 particles per point the resonance
structure is visible. Beneath that, the fitting algorithm still seems to find
the two gaussian peaks down to 600 particles per point but they are not
really visible to the naked eye. According to this simulations, the reachable
precision (N0 = 600) is 5 × 10−7. For comparision the precision for N0 = 1200
is 2.5 × 10−7 and for N0 = 105 simulations show 5 × 10−8.

The two possible ways of determination of the zero field transition frequency
have been compared. Using high statistics, the method using only the σ1
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transition has a higher error of a factor of about 1.12. Although, when using
lower statistics due to the sensitivity on inhomogeneities of the π1 transition,
the method using only the σ1 transition becomes more favorable.

One of the next steps would be to implement a setup for Ramsey spectroscopy
[46], using a second cavity which would provides a much better resolution.

Also, the effect of Majorana spin flips [47] which are spin flips caused by
strong variations of the magnetic field, should be investigated. This could
happen for example inside the CUSP which has zero magnetic field at its
center. An implementation of Majorana spin flips in the hbar_hfs program is
currently ongoing.

Since antihydrogen atoms produced in the CUSP will not be in the ground-
state [25] but will decay into lower states while traveling through the setup,
scans with higher states taken into account should be done.

Finally, scans using the real detector and event analysis instead of the
dummy detector would be of interest.
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6 Appendix

6.1 Fit Results: Dependence on Temperature

T (K) vm (m/s) t (s)

20 797 1.83 · 10−4

30 974 1.49 · 10−4

40 1 099 1.29 · 10−4

50 1 166 1.16 · 10−4

60 1 198 1.06 · 10−4

70 1 225 9.78 · 10−5

80 1 258 9.15 · 10−5

90 1 288 8.62 · 10−5

Table 6.1: Mean velocity vm (obtained from histograms from simulations using a
beam with Maxwell Boltzmann distributed velocity) and time spent in
the cavity t for different temperatures. N0 = 105.
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T (K) fc,me (kHz) fme (kHz) fme,e (kHz) sme (kHz) sme,e (kHz)

20 4.37 6.22 6.34 · 10−2 5.02 2.86 · 10−2

30 5.35 5.67 7.18 · 10−2 6.11 3.13 · 10−2

40 6.18 6.41 7.46 · 10−2 6.99 3.24 · 10−2

50 6.91 6.7 7.42 · 10−2 7.33 3.22 · 10−2

60 7.56 6.86 7.52 · 10−2 7.52 3.2 · 10−2

70 8.17 6.82 6.99 · 10−2 7.6 3.22 · 10−2

80 8.74 6.9 7.1 · 10−2 7.8 3.1 · 10−2

90 9.27 7.05 7.75 · 10−2 7.94 3.4 · 10−2

Table 6.2: Calculated (fc,me) and simluated (fme ± fme,e) FWHM of the monoenergetic
beam and as well as peak separation obtained from simulations for different
temperatures. N0 = 105.

T (K) fc,b (kHz) fb (kHz) fb,e (kHz) sb (kHz) sb,e (kHz)

20 5.54 4.52 0.11 4.82 4.74 · 10−2

30 7.18 5.75 0.13 5.95 5.56 · 10−2

40 8.3 6.68 0.14 6.77 5.96 · 10−2

50 9.28 6.75 0.13 6.98 5.63 · 10−2

60 10.16 6.75 0.13 7.1 5.74 · 10−2

70 10.98 7.2 0.15 7.32 5.93 · 10−2

80 11.73 7.36 0.16 7.49 6.71 · 10−2

90 12.45 7.51 0.19 7.72 7.76 · 10−2

Table 6.3: Calculated (fc,b) and simluated (fb ± fb,e) FWHM of the beam with
Maxwell-Boltzmann distributed velocity, as well as peak separation ob-
tained from simulations for different temperatures. N0 = 105.
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T(K) vm(m/s) b berr A Aerr

20 797 0.2924 2.77 · 10−4 7.483 · 10−2 8.99 · 10−4

30 974 0.2919 2.86 · 10−4 7.461 · 10−2 8.24 · 10−4

40 1 099 0.2918 2.93 · 10−4 7.637 · 10−2 7.83 · 10−4

50 1 166 0.291 2.96 · 10−4 7.837 · 10−2 7.64 · 10−4

60 1 198 0.29 2.98 · 10−4 7.959 · 10−2 7.55 · 10−4

70 1 225 0.2898 2.97 · 10−4 8.211 · 10−2 7.40 · 10−4

80 1 258 0.2854 2.95 · 10−4 8.154 · 10−2 7.41 · 10−4

90 1 288 0.2542 2.8 · 10−4 7.091 · 10−2 6.95 · 10−4

T(K) νσ (MHz) νσ,e (MHz) s(MHz) serr(MHz)

20 1 420.408005 2.978 · 10−5 5.017 · 10−3 2.862 · 10−5

30 1 420.408033 3.176 · 10−5 6.112 · 10−3 3.134 · 10−5

40 1 420.408028 3.327 · 10−5 6.985 · 10−3 3.245 · 10−5

50 1 420.408015 3.295 · 10−5 7.333 · 10−3 3.223 · 10−5

60 1 420.407969 3.277 · 10−5 7.521 · 10−3 3.201 · 10−5

70 1 420.407967 3.131 · 10−5 7.600 · 10−3 3.217 · 10−5

80 1 420.407992 3.153 · 10−5 7.796 · 10−3 3.098 · 10−5

90 1 420.408028 3.463 · 10−5 7.937 · 10−3 3.404 · 10−5

T(K) f(MHz) ferr(MHz) χ2 χ2/Nf

20 4.772 · 10−3 6.341 · 10−5 221.38 2.218
30 5.671 · 10−3 7.177 · 10−5 169.03 1.938
40 6.411 · 10−3 7.455 · 10−5 238.41 2.302
50 6.701 · 10−3 7.419 · 10−5 315.57 2.648
60 6.856 · 10−3 7.521 · 10−5 370.62 2.87
70 6.817 · 10−3 6.989 · 10−5 434.21 3.106
80 6.902 · 10−3 7.097 · 10−5 483.25 3.277
90 7.047 · 10−3 7.745 · 10−5 462.09 3.204

Table 6.4: Fit parameters with errors as well as χ2 value for simulated scans using a
monovelocitic beam with different vm. N0 = 105.
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T(K) power(W) b berr A Aerr

20 1.5 · 10−2 0.1291 1.92 · 10−4 2.993 · 10−2 6.01 · 10−4

30 2.24 · 10−2 0.1291 1.94 · 10−4 2.931 · 10−2 5.48 · 10−4

40 2.99 · 10−2 0.133 2.03 · 10−4 3.032 · 10−2 5.34 · 10−4

50 3.74 · 10−2 0.1392 2.06 · 10−4 3.217 · 10−2 5.42 · 10−4

60 4.49 · 10−2 0.1417 2.09 · 10−4 3.246 · 10−2 5.47 · 10−4

70 5.24 · 10−2 0.1404 2.13 · 10−4 3.228 · 10−2 5.32 · 10−4

80 5.98 · 10−2 0.1368 2.12 · 10−4 2.965 · 10−2 5.21 · 10−4

90 6.73 · 10−2 0.132 2.11 · 10−4 2.637 · 10−2 5.18 · 10−4

T(K) νσ(MHz) νσ,e(MHz) s(MHz) serr(MHz)

20 1 420.408072 4.815 · 10−5 4.822 · 10−3 4.738 · 10−5

30 1 420.408063 5.541 · 10−5 5.951 · 10−3 5.557 · 10−5

40 1 420.407977 5.881 · 10−5 6.771 · 10−3 5.957 · 10−5

50 1 420.407965 5.714 · 10−5 6.978 · 10−3 5.631 · 10−5

60 1 420.408016 5.552 · 10−5 7.095 · 10−3 5.740 · 10−5

70 1 420.408054 5.941 · 10−5 7.317 · 10−3 5.934 · 10−5

80 1 420.407928 6.366 · 10−5 7.487 · 10−3 6.706 · 10−5

90 1 420.408053 7.264 · 10−5 7.720 · 10−3 7.761 · 10−5

T(K) f(MHz) ferr(MHz) χ2 χ2/Nf

20 4.520 · 10−3 1.073 · 10−4 81.81 1.348
30 5.746 · 10−3 1.292 · 10−4 137 1.745
40 6.684 · 10−3 1.361 · 10−4 139.45 1.76
50 6.748 · 10−3 1.335 · 10−4 150.59 1.829
60 6.753 · 10−3 1.347 · 10−4 136.89 1.744
70 7.204 · 10−3 1.459 · 10−4 151.91 1.837
80 7.364 · 10−3 1.600 · 10−4 280.26 2.496
90 7.506 · 10−3 1.893 · 10−4 278.11 2.486

Table 6.5: Fit parameters with errors, χ2 value and calculated optimum power for
simulated scans using a beam with Maxwell-Boltzmann distributed velocity
with different temperatures. N0 = 105.
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6.2 Fit Results: Dependence on Cavity Power

T(K) b berr A Aerr νσ (MHz) νσ,e (MHz)

20 0.1276 1.85 · 10−4 2.374 · 10−2 6.26 · 10−4 1 420.407903 6.598 · 10−5

30 0.1285 1.92 · 10−4 3.008 · 10−2 5.53 · 10−4 1 420.407947 5.482 · 10−5

40 0.1325 1.99 · 10−4 3.124 · 10−2 5.34 · 10−4 1 420.408041 5.533 · 10−5

50 0.1392 2.06 · 10−4 3.217 · 10−2 5.42 · 10−4 1 420.407965 5.714 · 10−5

60 0.1418 2.11 · 10−4 3.129 · 10−2 5.41 · 10−4 1 420.407983 6.051 · 10−5

70 0.1408 2.23 · 10−4 3.088 · 10−2 5.49 · 10−4 1 420.408001 6.296 · 10−5

80 0.1377 2.09 · 10−4 2.983 · 10−2 5.26 · 10−4 1 420.407997 6.392 · 10−5

90 0.1329 2.08 · 10−4 2.775 · 10−2 5.11 · 10−4 1 420.407988 6.753 · 10−5

T(K) s(MHz) serr(MHz) f(MHz) ferr(MHz) χ2 χ2/Nf

20 4.917 · 10−3 6.767 · 10−5 4.887 · 10−3 1.557 · 10−4 186.21 2.034
30 6.002 · 10−3 5.452 · 10−5 5.879 · 10−3 1.280 · 10−4 154.77 1.855
40 6.632 · 10−3 5.537 · 10−5 6.474 · 10−3 1.313 · 10−4 117.75 1.618
50 6.978 · 10−3 5.631 · 10−5 6.748 · 10−3 1.335 · 10−4 150.59 1.829
60 7.141 · 10−3 6.106 · 10−5 7.012 · 10−3 1.431 · 10−4 191.18 2.061
70 7.217 · 10−3 6.264 · 10−5 7.112 · 10−3 1.479 · 10−4 133.39 1.722
80 7.351 · 10−3 6.375 · 10−5 7.264 · 10−3 1.499 · 10−4 151.98 1.838
90 7.562 · 10−3 6.832 · 10−5 7.431 · 10−3 1.625 · 10−4 118.69 1.624

Table 6.6: Fit parameters with errors, χ2 value as well as calculated power for
simulated scans using a beam with Maxwell-Boltzmann distributed velocity
for different temperatures T, the optimum power for 50 K and N0 = 105.
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6.3 Fit Results: Dependence on Inhomogeneity

σ (%) b berr A Aerr νπ(MHz) νπ,e(MHz)

0 0.2871 2.94 · 10−4 7.266 · 10−2 7.60 · 10−4 1 421.666098 3.116 · 10−5

0.1 0.2862 2.99 · 10−4 6.609 · 10−2 7.52 · 10−4 1 421.666083 3.547 · 10−5

0.2 0.2861 3.17 · 10−4 5.116 · 10−2 7.18 · 10−4 1 421.666192 5.394 · 10−5

0.3 0.2865 3.5 · 10−4 3.917 · 10−2 6.90 · 10−4 1 421.666119 9.475 · 10−5

0.4 0.2878 4.24 · 10−4 3.089 · 10−2 7.32 · 10−4 1 421.666264 1.598 · 10−4

0.5 0.2896 7.07 · 10−4 2.448 · 10−2 1.10 · 10−3 1 421.666053 1.993 · 10−4

σ (%) s(MHz) serr(MHz) f(MHz) ferr(MHz) χ2 χ2/Nf

0 6.954 · 10−3 3.060 · 10−5 5.925 · 10−3 6.843 · 10−5 736.72 4.046
0.1 6.966 · 10−3 3.466 · 10−5 6.254 · 10−3 7.980 · 10−5 486.08 3.287
0.2 6.954 · 10−3 4.977 · 10−5 7.730 · 10−3 1.200 · 10−4 166.01 1.921
0.3 7.078 · 10−3 7.752 · 10−5 1.043 · 10−2 2.139 · 10−4 117.53 1.616
0.4 7.329 · 10−3 1.167 · 10−4 1.458 · 10−2 4.612 · 10−4 55.45 1.11
0.5 7.298 · 10−3 2.623 · 10−4 2.073 · 10−2 1.526 · 10−3 61.38 1.168

Table 6.7: Fit parameters with errors as well as χ2 for different inhomogeneities σ
for simulated scans using N0 = 105 and a monovelocitic beam with vm,
the mean velocity of a MB distributed beam of 50 K.
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σ (%) b berr A Aerr νπ(MHz) νπ,e(MHz)

0.1 0.1368 2.31 · 10−4 2.190 · 10−2 5.30 · 10−4 1 421.665976 8.217 · 10−5

0.2 0.1374 2.45 · 10−4 1.909 · 10−2 4.71 · 10−4 1 421.66606 1.179 · 10−4

0.3 0.1379 2.74 · 10−4 1.549 · 10−2 4.58 · 10−4 1 421.66583 1.892 · 10−4

0.4 0.1383 3.26 · 10−4 1.307 · 10−2 4.68 · 10−4 1 421.665769 2.738 · 10−4

0.5 0.1388 4.49 · 10−4 1.095 · 10−2 5.32 · 10−4 1 421.666695 3.523 · 10−4

σ (%) s(MHz) serr(MHz) f(MHz) ferr(MHz) χ2 χ2/Nf

0.1 7.283 · 10−3 8.751 · 10−5 7.228 · 10−3 2.158 · 10−4 179.1 1.995
0.2 7.609 · 10−3 1.148 · 10−4 9.558 · 10−3 2.846 · 10−4 123.45 1.656
0.3 8.194 · 10−3 1.537 · 10−4 1.260 · 10−2 4.422 · 10−4 54.27 1.098
0.4 8.419 · 10−3 2.076 · 10−4 1.583 · 10−2 7.461 · 10−4 42.84 0.976
0.5 8.495 · 10−3 3.046 · 10−4 2.020 · 10−2 1.535 · 10−3 32.04 0.844

Table 6.8: Fit parameters with errors as well as χ2 for different inhomogeneities σ
for simulated scans using N0 = 105 and a MB beam with 50 K.

σ (%) b berr A Aerr νσ(MHz) νσ,e(MHz)

0.1 0.1873 2.63 · 10−4 4.394 · 10−2 5.46 · 10−4 1 420.408011 4.814 · 10−5

0.5 0.1874 2.63 · 10−4 4.398 · 10−2 5.54 · 10−4 1 420.407975 4.839 · 10−5

1 0.1869 2.63 · 10−4 4.314 · 10−2 5.53 · 10−4 1 420.408075 4.948 · 10−5

5 0.1872 2.64 · 10−4 4.240 · 10−2 5.50 · 10−4 1 420.407949 5.043 · 10−5

10 0.1873 2.65 · 10−4 4.314 · 10−2 5.53 · 10−4 1 420.407996 2.788 · 10−5

σ (%) s(MHz) serr(MHz) f(MHz) ferr(MHz) χ2 χ2/Nf

0.1 8.852 · 10−3 4.762 · 10−5 7.911 · 10−3 1.145 · 10−4 191.62 2.064
0.5 8.907 · 10−3 4.755 · 10−5 7.946 · 10−3 1.132 · 10−4 173.09 1.961
1 8.804 · 10−3 4.871 · 10−5 7.985 · 10−3 1.171 · 10−4 157.66 1.872
5 8.782 · 10−3 5.003 · 10−5 8.092 · 10−3 1.181 · 10−4 181.57 2.009
10 8.847 · 10−3 5.291 · 10−5 8.070 · 10−3 1.179 · 10−4 132.23 1.714

Table 6.9: Fit parameters b, A and νσ with errors for different inhomogeneities σ for
simulated scans using N0 = 105 and a beam monovelocitic beam with vm,
the mean velocity of a MB distributed beam of 50 K.
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6.4 Fit Results: Dependence on Statistics

N0 b berr A Aerr νσ (MHz) νσ,e (MHz)

600 0.1408 3.06 · 10−3 2.991 · 10−2 6.09 · 10−3 1 420.40699 1.181 · 10−3

700 0.1437 3.12 · 10−3 4.027 · 10−2 5.34 · 10−3 1 420.40726 6.345 · 10−4

800 0.1377 2.23 · 10−3 3.521 · 10−2 5.92 · 10−3 1 420.408002 5.059 · 10−4

900 0.1358 2.4 · 10−3 3.997 · 10−2 6.95 · 10−3 1 420.408147 5.287 · 10−4

1 000 0.1373 2.07 · 10−3 3.467 · 10−2 5.58 · 10−3 1 420.408549 4.263 · 10−4

1 100 0.1383 2.06 · 10−3 2.993 · 10−2 5.01 · 10−3 1 420.408271 3.749 · 10−4

1 300 0.1376 1.9 · 10−3 3.250 · 10−2 4.84 · 10−3 1 420.408306 4.826 · 10−4

1 500 0.1411 1.68 · 10−3 3.893 · 10−2 4.36 · 10−3 1 420.408066 3.244 · 10−4

1 700 0.1374 1.58 · 10−3 3.584 · 10−2 4.09 · 10−3 1 420.408009 3.386 · 10−4

2 000 0.1363 1.52 · 10−3 3.130 · 10−2 3.75 · 10−3 1 420.408268 3.776 · 10−4

N0 s(MHz) serr(MHz) f(MHz) ferr(MHz) χ2 χ2/Nf

600 6.989 · 10−3 8.353 · 10−4 9.829 · 10−3 2.256 · 10−3 36.21 0.897
700 9.080 · 10−3 6.845 · 10−4 1.003 · 10−2 1.606 · 10−3 45.91 1.01
800 6.985 · 10−3 4.935 · 10−4 5.461 · 10−3 1.044 · 10−3 43.04 0.978
900 7.118 · 10−3 5.175 · 10−4 5.060 · 10−3 1.761 · 10−3 32.93 0.855

1 000 6.581 · 10−3 4.325 · 10−4 5.209 · 10−3 1.213 · 10−3 32.55 0.85
1 100 7.435 · 10−3 5.170 · 10−4 6.329 · 10−3 1.417 · 10−3 36.24 0.897
1 300 7.176 · 10−3 4.959 · 10−4 6.063 · 10−3 1.344 · 10−3 51.48 1.07
1 500 6.375 · 10−3 3.395 · 10−4 5.719 · 10−3 7.187 · 10−4 35.49 0.888
1 700 6.686 · 10−3 3.293 · 10−4 5.924 · 10−3 8.314 · 10−4 35.55 0.889
2 000 7.854 · 10−3 4.022 · 10−4 6.306 · 10−3 1.043 · 10−3 59.61 1.151

Table 6.10: Fit parameters and their errors for scans using different number
of particles per scan point N0. A fieldmap with µ = 0.88 G and
rms = 0.0053 G was used.
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N0 b berr A Aerr νσ(MHz) νσ,e(MHz)

600 0.1414 2.93 · 10−3 3.539 · 10−2 7.02 · 10−3 1 420.418722 6.828 · 10−4

700 0.1347 2.76 · 10−3 3.022 · 10−2 6.51 · 10−3 1 420.418632 6.057 · 10−4

800 0.1364 2.35 · 10−3 3.218 · 10−2 5.71 · 10−3 1 420.419168 5.218 · 10−4

900 0.1365 2.23 · 10−3 3.459 · 10−2 5.51 · 10−3 1 420.419181 4.417 · 10−4

1 000 0.1395 2.61 · 10−3 3.097 · 10−2 4.48 · 10−3 1 420.41862 4.300 · 10−4

1 100 0.1349 2.15 · 10−3 3.120 · 10−2 4.78 · 10−3 1 420.419498 4.664 · 10−4

1 300 0.1355 1.77 · 10−3 3.654 · 10−2 4.70 · 10−3 1 420.418533 3.086 · 10−4

1 500 0.1401 1.86 · 10−3 3.537 · 10−2 3.97 · 10−3 1 420.418592 2.774 · 10−4

1 700 0.1362 1.61 · 10−3 3.078 · 10−2 3.81 · 10−3 1 420.418538 3.580 · 10−4

2 000 0.1382 1.55 · 10−3 3.585 · 10−2 3.41 · 10−3 1 420.419029 3.012 · 10−4

N0 s(MHz) serr(MHz) f(MHz) ferr(MHz) χ2 χ2/Nf

600 7.180 · 10−3 7.040 · 10−4 5.692 · 10−3 1.688 · 10−3 36.91 0.906
700 6.916 · 10−3 5.833 · 10−4 5.572 · 10−3 2.038 · 10−3 32.52 0.85
800 7.634 · 10−3 5.323 · 10−4 5.326 · 10−3 1.147 · 10−3 35.16 0.884
900 7.234 · 10−3 4.174 · 10−4 5.435 · 10−3 1.110 · 10−3 23.99 0.73

1 000 7.129 · 10−3 6.736 · 10−4 8.929 · 10−3 1.612 · 10−3 41.3 0.958
1 100 6.266 · 10−3 5.181 · 10−4 6.184 · 10−3 1.342 · 10−3 40.95 0.954
1 300 6.501 · 10−3 3.088 · 10−4 4.507 · 10−3 7.795 · 10−4 36.22 0.897
1 500 5.871 · 10−3 4.213 · 10−4 6.472 · 10−3 9.408 · 10−4 54.84 1.104
1 700 6.656 · 10−3 3.532 · 10−4 5.660 · 10−3 7.834 · 10−4 47.31 1.025
2 000 6.835 · 10−3 2.937 · 10−4 5.970 · 10−3 7.092 · 10−4 49.08 1.044

Table 6.11: Fit parameters and their errors for scans using different number
of particles per scan point N0. A fieldmap with µ = 2.19 G and
rms = 0.014 G was used.
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N0 b berr A Aerr νσ(MHz) νσ,e(MHz)

600 0.1413 3.1 · 10−3 3.342 · 10−2 5.87 · 10−3 1 420.458454 6.773 · 10−4

700 0.1383 2.99 · 10−3 2.986 · 10−2 5.75 · 10−3 1 420.459027 6.553 · 10−4

800 0.137 2.7 · 10−3 3.063 · 10−2 5.14 · 10−3 1 420.458672 6.319 · 10−4

900 0.1375 2.6 · 10−3 2.959 · 10−2 4.94 · 10−3 1 420.458868 6.149 · 10−4

1 000 0.1413 2.63 · 10−3 3.292 · 10−2 4.43 · 10−3 1 420.458872 6.027 · 10−4

1 100 0.1361 2.12 · 10−3 2.864 · 10−2 4.55 · 10−3 1 420.458659 5.531 · 10−4

1 300 0.1381 1.96 · 10−3 3.174 · 10−2 4.09 · 10−3 1 420.458695 4.576 · 10−4

1 500 0.139 1.97 · 10−3 3.286 · 10−2 3.72 · 10−3 1 420.458448 4.313 · 10−4

1 700 0.1376 1.68 · 10−3 3.252 · 10−2 3.85 · 10−3 1 420.458867 3.512 · 10−4

2 000 0.14 1.61 · 10−3 3.605 · 10−2 3.30 · 10−3 1 420.458387 3.118 · 10−4

N0 s(MHz) serr(MHz) f(MHz) ferr(MHz) χ2 χ2/Nf

600 7.799 · 10−3 6.482 · 10−4 8.061 · 10−3 1.443 · 10−3 45.61 1.007
700 7.728 · 10−3 6.614 · 10−4 7.097 · 10−3 2.059 · 10−3 42.25 0.969
800 7.963 · 10−3 6.300 · 10−4 7.805 · 10−3 1.555 · 10−3 26.62 0.769
900 7.148 · 10−3 5.618 · 10−4 7.121 · 10−3 1.711 · 10−3 33.42 0.862

1 000 7.953 · 10−3 5.535 · 10−4 9.398 · 10−3 1.397 · 10−3 41.63 0.962
1 100 6.431 · 10−3 5.495 · 10−4 6.942 · 10−3 1.197 · 10−3 33.85 0.867
1 300 7.192 · 10−3 4.603 · 10−4 6.896 · 10−3 9.631 · 10−4 30.64 0.825
1 500 7.291 · 10−3 4.723 · 10−4 7.969 · 10−3 1.002 · 10−3 46.48 1.016
1 700 6.892 · 10−3 3.407 · 10−4 5.643 · 10−3 9.251 · 10−4 50.23 1.057
2 000 7.093 · 10−3 3.009 · 10−4 6.826 · 10−3 7.301 · 10−4 44.14 0.99

Table 6.12: Fit parameters and their errors for scans using different number
of particles per scan point N0. A fieldmap with µ = 4.39 G and
rms = 0.029 G was used.
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N0 ν0(MHz) ν0,e(MHz) νe,rel χ2/Nf

2 000 1 420.406105 3.194 · 10−4 2.248 · 10−7 0.285
1 700 1 420.405703 3.195 · 10−4 2.249 · 10−7 1.052
1 500 1 420.405779 2.899 · 10−4 2.041 · 10−7 0.959
1 300 1 420.405137 3.604 · 10−4 2.537 · 10−7 0.22
1 100 1 420.40631 3.327 · 10−4 2.342 · 10−7 0.734
1 000 1 420.406302 3.894 · 10−4 2.741 · 10−7 0.533
900 1 420.406025 4.356 · 10−4 3.067 · 10−7 2 · 10−3

800 1 420.40594 4.448 · 10−4 3.131 · 10−7 0.205
700 1 420.405148 5.329 · 10−4 3.752 · 10−7 0.142
600 1 420.405142 6.504 · 10−4 4.579 · 10−7 0.557

Table 6.13: Results for ν0, error ν0,e and relative error νe,rel as well as χ2/Nf

of the extrapolation to zero static magnetic field for different N0.
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6.5 Fit Results: Extrapolation to Zero Field

trans. angle (◦) dist. b berr A Aerr

σ 0 MB 0.1387 2.23 · 10−4 3.168 · 10−2 5.31 · 10−4

π 90 MB 0.1368 4.32 · 10−4 1.367 · 10−2 4.71 · 10−4

σ 45 MB 0.14 2.18 · 10−4 2.392 · 10−2 5.16 · 10−4

π 45 MB 0.1374 3.7 · 10−4 1.693 · 10−2 4.57 · 10−4

trans. angle (◦) dist. νi(MHz) νi,e(MHz) s(MHz) serr(MHz)

σ 0 MB 1 420.407847 5.390 · 10−5 6.873 · 10−3 5.375 · 10−5

π 90 MB 1 421.627403 9.053 · 10−5 8.222 · 10−3 1.638 · 10−4

σ 45 MB 1 420.40785 7.425 · 10−5 7.093 · 10−3 7.399 · 10−5

π 45 MB 1 421.627295 1.497 · 10−4 7.310 · 10−3 1.211 · 10−4

trans. angle (◦) dist. f(MHz) ferr(MHz) χ2 χ2/Nf

σ 0 MB 6.724 · 10−3 1.260 · 10−4 139.48 1.761
π 90 MB 1.282 · 10−2 5.147 · 10−4 68.58 1.234
σ 45 MB 7.045 · 10−3 1.763 · 10−4 85.79 1.381
π 45 MB 1.150 · 10−2 3.892 · 10−4 110.49 1.567

Table 6.14: Fit parameters with errors for σ1 and π1 transition for different angles
between static and oscillating magnetic field. A static magnetic field of
8.78 × 10−5 T and N0 = 105 was used.
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trans. dist. B(T) Berr(T) b berr

σ MB 8.78 · 10−5 5.36 · 10−7 0.1387 2.23 · 10−4

σ MB 2.19 · 10−4 1.41 · 10−6 0.1387 2.27 · 10−4

σ MB 4.39 · 10−4 2.91 · 10−6 0.1382 2.24 · 10−4

trans. dist. A Aerr νσ(MHz) νσ,e(MHz)

σ MB 3.168 · 10−2 5.31 · 10−4 1 420.407847 5.390 · 10−5

σ MB 3.190 · 10−2 4.76 · 10−4 1 420.418926 4.861 · 10−5

σ MB 3.151 · 10−2 4.86 · 10−4 1 420.458442 4.843 · 10−5

trans. dist. s(MHz) serr(MHz) f(MHz) ferr(MHz) χ2 χ2/Nf

σ MB 6.873 · 10−3 5.375 · 10−5 6.724 · 10−3 1.260 · 10−4 139.48 1.761
σ MB 6.967 · 10−3 4.990 · 10−5 6.559 · 10−3 1.217 · 10−4 147.44 1.81
σ MB 6.922 · 10−3 4.897 · 10−5 6.474 · 10−3 1.215 · 10−4 122.86 1.652

Table 6.15: Summary of fit parameters and errors for the σ1 transition using a
beam with Maxwell-Boltzmann distributed velocity (50 K), N0 =
105.
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